

砂層の圧縮充てんメカニズム

砂層の圧縮充てんメカニズム

<u>粉粒体の圧縮メカニズム</u>(Cooper-Eaton)

Cooper-Eaton式

Cooper-Eaton'の実験式

$$\frac{V(0) - V(P)}{V(0) - V(\infty)} = \underbrace{A_1 \exp(-\frac{B_1}{P})}_{-\frac{P}{2}} + \underbrace{(1 - A_1) \exp(-\frac{B_2}{P})}_{-\frac{P}{2}}$$

Filling of Large Void

Filling of Small Void

- V(P): 見かけ容積
 - P : 圧縮圧力
- V(0): 無加圧状態での見かけ容積
- $V(\infty)$: 空孔が存在しない状態での見かけ容積

生型砂(粘着層を有する砂)の圧縮メカニズム

Cooper-Eaton式を用いた実験解析

Cooper-Eatonの実験式

再配列機構による体積減少量

$$\Delta V_1 = \left(V(0) - V(\infty)\right) \times A_1 \exp(-\frac{B_1}{P})$$

変形機構による体積減少量

$$\Delta V_2 = \left(V(0) - V(\infty)\right) \times \left(1 - A_1\right) \exp\left(-\frac{B_2}{P}\right)$$

空隙率と見かけ体積との関係

$$\varepsilon(P) = 1 - \frac{1}{V(P)} \frac{m}{\rho}$$

arepsilon(P): 生型砂の空隙率ho: 生型砂の真密度m: 生型砂の質量

粒度分布

mm	600	425	300	212	150	106	75	53	PAN	JIS	d _{ave}	ø _s
Sn	31	44	63	89	125	178	249	355	631	FN	[µm]	[-]
Ceramic #400	-	11.2	72.4	15.9	0.4	-	-	-	-	65.3	316.6	0.97
Ceramic #650	•	-	2.9	40.3	43.0	12.2	1.7	•	-	117.3	208.5	0.97
Ceramic #950	-	-	1.3	14.5	20.3	44.2	17.8	1.9	-	168.8	152.5	0.97
Ceramic mono400	-	0.6	92.0	7.4	-	-	-	-	-	64.8	355.9	0.97
Ceramic mono1450	-	-	-	-	1.3	90.5	8.2	-	-	183.1	125.5	0.97
Silica A (Flattery)	-	0.8	14.7	41.0	27.7	14.1	1.5	0.1	-	112.2	236.8	0.66
Chromite	26.8	40.0	14.2	9.7	5.4	3.0	0.8	0.2	-	58.3	489.6	0.72
Olivine	0.2	1.4	24.1	34.2	24.6	10.1	3.3	1.4	0.8	113.0	244.9	0.53
Zircon	•	-	0.4	38.2	56.5	4.7	0.1	0.1	-	114.0	207.7	0.88
Silica B (Fremantle)	12.3	32.2	35.6	14.4	3.9	1.4	0.1	0.1	-	61.4	428.9	0.64
Silica C (Mikawa)	-	0.8	14.7	41.0	27.7	14.1	1.5	0.1	-	110.1	232.2	0.63

Unit [mass%]

 d_{ave} : Average Diameter ϕ_s : Shape Coefficient

⊶ 0.5mm

生型砂特性

	Ceramic #400	Ceramic #650	Ceramic #950	Ceramic Mono 400	Ceramic Mono 1450	Silica A (Flattery)	Chromite	Olivine	Zircon	Silica B (Fremantle)	Silica C (Mikawa)
Bentonite Content					Na ty	ype 8, 10,	12 %				
CB Index		35, 40, 45 %									
Particle Density [kg/m ³]	2700	2700	2700	2700	2700	2600	4500	3200	4700	2600	2650
Bentonite Density [kg/m ³]						780					
Moisture Content* [%]	2.7	2.6	2.5	2.7	2.9	2.6	2.7	3.1	2.5	2.3	2.6

*: The value is in the case of Bentonite 10% and CB35%

生型砂写真

Ceramic #400	Ceramic #650	Ceramic #950
	BE CONTRACTOR	EE Jacomere
Chromite	Olivine	Zircon
Silica A (Flattery)	Silica B (Fremantle)	Silica C (Mikawa)
REALERS		

スクィーズ圧と砂層高さ

スクィーズ圧と空隙率

Cooper-Eaton 式によるフィッティング

非線形回帰によるフィッティング結果

		CB index of 35%						
	A ₁	B ₁	B ₂	r	$\frac{\Delta \varepsilon_s}{\Delta \varepsilon}$			
Ceramic #400	0.56	0.012	1.82	0.959	77.8			
Ceramic #650	0.54	0.014	1.56	0.952	72.7			
Ceramic #950	0.51	0.015	1.47	0.946	69.2			
Ceramic mono400	0.57	0.015	1.54	0.957	73.5			
Ceramic mono1450	0.55	0.013	1.67	0.918	74.9			
Silica A (Flattery)	0.53	0.016	1.58	0.951	72.2			
Chromites	0.52	0.014	1.57	0.956	69.2			
Olivine	0.56	0.015	1.47	0.955	73.0			
Zircon	0.50	0.017	1.16	0.972	62.4			
Silica B (Fremantle)	0.57	0.011	1.88	0.972	79.7			
Silica C (Mikawa)	0.51	0.008	1.90	0.922	76.2			

Bentonite content : 10% CB index of 35%

スクィーズ圧縮における空隙率変化

スクィーズ圧縮における空隙率変化

平均粒径と粒度分布の違いによる空隙率

CB値と初期砂層高さの関係

Bentonite content : 10%

sq

CB値と初期空隙率の関係

CB値の違いによる粘着層の変形

ベントナイト配合率の違いによる空隙率変化

ベントナイト配合率の違いによる再配列定常値

ベントナイト配合率の違いによる粘着層の変形

B₁ В, A₁ r Ceramic #400 0.56 0.012 1.82 0.959 77.8 Ceramic #650 0.54 0.014 1.56 0.952 72.7 Ceramic #950 0.51 0.015 1.47 0.946 69.2 Ceramic mono400 0.57 0.015 1.54 0.957 73.5 約70% 74.9 Ceramic mono1450 0.55 0.013 1.67 0.918 以上 72.2 Silica A (Flattery) 1.58 0.53 0.016 0.951 Chromites 0.52 0.014 1.57 0.956 69.2 Olivine 0.56 0.015 1.47 0.955 73.0 Zircon 0.50 0.017 1.16 0.972 62.4 Silica B (Fremantle) 0.57 0.011 1.88 0.972 79.7 Silica C (Mikawa) 0.51 0.008 0.922 76.2 1.90

鋳型特性とCooper-Eaton式解析

Cooper-Eaton式による解析のまとめ

生型砂の圧縮挙動を明らかにする新しい方法として、Cooper-Eaton 式を用いてスクィーズ圧縮時の空隙率変化を調査した結果、以下の ことが明らかになった。

- Cooper-Eaton式による圧縮挙動解析により、充てん機構を粒子再 配列機構によるものと、ベントナイト粘着層の変形によるものとに 明確に分離できる。
- CB値の変化、ベントナイト配合率の違い、骨材変化、すなわち粒 度分布や形状係数など粒子特性の違いによる圧縮充てん挙動の 変化が明確に表現できる
- 3. 再配列機構による空隙率変化量は全体変化量の約70%を占める.
- 4. 造型後の再配列機構による充てんの定常空隙率 ε_sは初期状態の 影響を強く受ける.また、粒度分布及び形状係数の影響により、この再配列定常空隙率 ε_sは変化し、造型後の空隙率 ε_fにそのまま 反映される.